RFbeam Microwave GmbH

product information

K-LC7 radar transciever

Features

- Small and low cost 24 GHz transceiver
- Two Rx Antennas for angle measurement
- I/Q IF outputs
- Fully integrated low phase noise VCO
- Built in temperature compensation circuit for VCO stabilization
- Wide power supply range from 3.2 to 5.5V
- 3×4 patch antenna with 80°/34° beam aperture
- SMT type available on request

Applications

- Direction sensitive movement detection
- Security systems
- Home automation
- Indoor and outdoor lighting control applications
- Object speed measurement systems
- Ranging detection of moving objects using FSK
- Industrial sensors

Description

The K-LC7 is a small and low cost radar module which allows angle measurements. The module is operating in the 24.0 GHz to 24.25 GHz ISM band and it has a built in low phase noise VCO, which makes the module suitable for FSK or FMCW applications. The internal temperature compensating circuit keeps the output frequency stable over a wide temperature range.

IF outputs I and Q allow movement direction detection and high performance signal processing.

The sensor has a 3x4 patch radar frontend with an asymmetrical beam. The built-in voltage regulator covers a wide power supply range from 3.2 to 5.5V. The module provides a frequency divided output which can be used to measure the output frequency of the VCO.

Block Diagram

Figure 1: K-LC7 block diagram

CHARACTERISTICS

Parameter	Conditions/Notes	Symbol	Min	Тур	Max	Unit
Operating Conditions						
Supply voltage		Vcc	3.2		5.5	V
Supply current		Icc		90		mA
VCO input voltage		U _{VCO}	0		5	V
VCO pin resistance	Driving voltage source Note 1	R _{VCO}		120		kΩ
Operating temperature		T _{St}	-20		85	°C
Storage temperature		T _{op}	-20		105	
Fransmitter			•			
Transmitter frequency	V _{CO} pin left open, Tamb = -20 °C +85 °C	f _{TX}	24	24.125	24.25	GHz
Frequency drift vs. temperature	V _{cc} = 5V, -20°C +85°C Note 2	Δ f _{TX}		0.1		MHz/°C
Frequency tuning range		Δ f _{VCO}	200	250	350	MHz
VCO sensitivity		S _{VCO}	200	80		MHz/V
VCO Modulation Bandwidth	$\Delta f = 20 MHz$	B _{vco}		100		kHz
Output power	EIRP	P _{TX}		12		dBm
Output power deviation	Full V _{CO} tuning range	ΔP _{TX}		12	+/-1	
Spurious emissions	According to ETSI 300 440			-30		dBm
	According to E13i 300 440	P_{Spur}		-30		UDIII
Receiver						
Mixer conversion loss	$f_{IF} = 1 \text{ kHz}, IF \text{ load} = 1 \text{ k}\Omega$	D _{mixer1}		-6		dB
Antenna gain	$f_{IF} = 20 \text{MHz}$, IF load = 50Ω	D _{mixer2}		-11		dB
	$f_{TX} = 24.125 \text{GHz}$	G _{Ant}		8.6		dBi
Receiver sensitivity	$f_{IF} = 500 Hz$, $B = 1 kHz$, $R_{IF} = 1 k\Omega$, $S/N = 6 dB$	P _{RX}		-96		dBm
Overall sensitivity	$f_{IF} = 500 Hz, B = 1 kHz, R_{IF} = 1 k\Omega, S/N = 6 dB$	D _{system}		-108		dBc
Antenna						
Horizontal –3 dB beamwidth	E-Plane	W_{ϕ}		80		0
Vertical –3 dB beamwidth	H-Plane	W_{θ}		34		0
Horiz. sidelobe suppression		D_{φ}	-12	-20		dB
Vertical sidelobe suppression		$D_{ heta}$	-12	-20		dB
Rx1/Rx2 spacing		1		8.763		mm
F output						
IF output resistance		R _{IF}		50		Ω
IF frequency range	-3 dB Bandwidth, IF load = 50Ω	f _{IF}	0		50	MHz
IF noise power	$f_{IF} = 500 Hz$, IF load = 50Ω	P _{IFnoise1}		-134		dBm/Hz
	$f_{IF} = 1 \text{ MHz}, \text{ IF load} = 50 \Omega$	P _{IFnoise2}		-164		dBm/Hz
IF noise voltage	$f_{IF} = 500 \text{Hz}$, IF load = $1 \text{k} \Omega$	U _{IFnoise1}		-147		dBm/Hz
	$f_{IF} = 500 Hz$, IF load = $1 k \Omega$	U _{IFnoise1}		45		nV/√Hz
IF output offset voltage	Full VCO range, no object in range	U_{IF}	-200		200	mV
I/Q amplitude balance	$f_{IF} = 500 Hz, U_{IF} = 1 mVpp$	Δ U _{IF}		3		dB
I/Q phase shift	f _{IF} = 1 Hz 20 kHz	φ	80	90	100	0
Supply rejection	Rejection supply pins to IF output	D _{Supply}		25		dB
requency divider output						
Prescaler division factor		X _{div}		8192		
Divider output frequency		F _{div}		2.94		MHz
Divider output voltage	Load = $1 \text{ k}\Omega$	U _{div}		1.5		Vpp
Body						
Weight				5		g
						9

Note 1 The VCO input has an internal voltage source with approximately 1.2 VDC and can be left open.

Note 2 Transmit frequency stays within 24.000 to 24.250GHz over the specified temperature range when the VCO pin is left open.